
Programming for Cryptologists
September 2021

Foreword
This guide has been produced as an update to the original Programming for Cryptologists
published in 2011, in celebration of the 20th anniversary of the National Cipher Challenge.
Whilst the previous guide covered multiple programming languages, this updated version
focuses solely on Python: a language which has experienced a meteoric rise in popularity over
the last decade and is now commonplace across STEM education.

There are many brilliant free resources available for learning Python and this guide does not
seek to replicate them, but rather provide some tips and tricks specific to cryptanalysis.

Context
Cryptology and computer science have a shared history. Ada Lovelace and Charles Babbage’s
work on the Difference Engine and Analytical Engine laid the foundations for general purpose
computing: machines that could be programmed to solve many different problems. Lovelace
and Babbage were ahead of their time, though, and government funding for their machine was
sadly cut. It was not until World War II when cryptanalysis accelerated computer science forward.
The need for computation machines to attack the Enigma led to the creation of Bombes:
originally a Polish invention, these were the electro-mechincal devices which Alan Turing and his
colleagues used to successfully decipher Enigma messages. Turing is most famously associated
with his wartime cryptanalytic efforts which are often credited as having shortened the war by
several years and saved millions of lives. This is far from the limit of Turing’s legacy, though, and
his work on theoretical computer science to this date defines the field as we know it. Cryptology
continues to define modern computing, with the ubiquity of Internet technology only being
possible due to the strong encryption that enables it. Communications security is a lot more
complex these days, where threats to cyber security manifest in myriad forms other than weak
encryption, but the tight coupling of cryptology and computer science is set to remain as
quantum computing and quantum cryptography looks to define the next era.

Developing a literacy in computer programming is the underpinning to a good cryptanalyst, and
for the budding computer scientist, algorithmic cryptanalysis is an effective way to learn.

Getting Started with Python
There are many tutorials available online for getting started with Python. Some of these might
refer to an older version of Python, namely Python 2 which is no longer officially supported as of
1st January 2020 (twenty years after its initial release). Python 3 is the current version (at the
time of writing!) which has been available since 2006 and is the best place to start.

There are a few different ways to write and run Python code. You can write code on your
computer using a text editor and execute it on the 'command line' having already installed

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Python, or a purpose-built Integrated Development Environment (IDE) which you can also
download and install. You can also run Python interactively, where you can execute code line-by-
line and see the results one step at a time. Alternatively, many websites will let you write and
execute code in your web browser without the need to install anything on your computer.
Growing in popularity is use of Jupyter Notebooks which allow you to interactively write and
execute code - this guide is an example of a Jupyter Notebook itself! Notebooks can be a lot
easier to use than learning how to execute Python on the command line, and are a really
effective way to tackle ciphers. You can try out Jupyter online without needing to install
anything, or download and install it alongside Python and a whole load of useful data science
packages bundled together in Anaconda.

This guide provides a few code snippets and examples to get you started with using Python for
cryptanalysis.

String Manipulation
Python allows you to define ‘string literals’ (i.e. some text) and iterate over the characters that
make up that string:

A

t

t

a

c

k

a

t

d

a

w

n

Python also lets you to define ‘byte strings’ - these behaviour a little differently and allow us to
access the underlying representation of the letters in the computer’s memory. At the lowest
level, computers only store numbers (ones and zeros, known as ‘bits’) therefore any other type
of data (text, images, videos) must be ‘encoded’, in other words, represented as a string of ones
and zeros (a ‘byte’ is 8 bits, for example 01000001). In Python, we can define a byte string by
adding the letter ‘b’ before the string quotes:

65

116

116

97

99

107

32

97

In [1]: message = "Attack at dawn"
for letter in message:

 print(letter)

In [2]: message = b"Attack at dawn"

for letter in message:

 print(letter)

https://jupyter.org/try
https://www.anaconda.com/products/individual

116

32

100

97

119

110

This time, when we iterate over the string instead of getting single characters, we receive a
number that represents that letter. The mapping between letters and numbers is defined by the
encoding scheme, which by default is ASCII. There are many ASCII tables that show this mapping
available online. For instance, uppercase ‘A’ is represented by the decimal 65 (not to be
confused with the hexadecimal representation, 0x41) and lowercase ‘a’ is represented by the
decimal 97 (hexadecimal 0x61).

Working with byte strings is convenient to us as cryptanalysts because we’ll often want to use a
numerical representation of the letters. If we were using normal strings, we would need to use
the ord() function to convert between a letter and its ASCII representation. Ordinarily, we are
going to want letters to be mapped to numbers in the range 0 to 25, though. There’s a simple
trick here: we can just minus 65 from every letter and this maps ‘A...Z’ to ‘0...25’ instead.

There is an alternative to using byte strings. If you find it easier, you can look up the index of
each letter within the alphabet, like so:

0

19

19

0

2

10

0

19

3

0

22

13

There are often many different ways to achieve the same result in programming, and Python
offers many shortcuts if you choose to use them. These can often speed up writing code, though
often at the cost of the ‘readability’ of your code (how easy it is for someone else to understand
your code).

For instance, there is a very powerful library that can be installed with Python named numpy.
One of the nice features of numpy is that it provides a data type called an array which comes
with many useful features. One such feature is the ability to apply an operation to every element
of an array at the same time, for instance:

In [3]: alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

message = "ATTACKATDAWN"

for letter in message:

 print(alphabet.index(letter))

In [4]: # Import the numpy library

import numpy as np

Convert to uppercase and strip spaces.

It is easiest to work with strings with every character

as upper or lower case when converting from ASCII.
message = b"Attack at dawn".upper().replace(b' ',b'')

Create a list from the bytes string, convert it to a numpy array,

[0 19 19 0 2 10 0 19 3 0 22 13]

Converting back and forth between letters and numbers will come in handy, so we can define
these as functions that we can call:

You can condense this into a one-line function definition using a feature of Python called
‘lambdas’:

You can then implement a Caesar Shift cipher with ease:

b'MFFMOWMFPMIZ'

b'ATTACKATDAWN'

The percentage symbol here is used as modulus, i.e. to wrap a number between 0 and 25.

Transposition
Implementing transposition ciphers in Python can be a little tricky. One trick that can help is to
make use of the transpose function that the numpy library provides for 2D arrays.

Consider the following message that has been encrypted using a columnar transposition cipher
with a key of ‘2, 0, 1’:

We can first populate this into a 3 by 4 array:

[[19 10 3 13]

 [0 0 0 0]

 [19 2 19 22]]

Then transpose the array and rearrange the columns:

then minus 65 from each item

msg_array = np.array(list(message)) - 65 # 'A' = 65

print(msg_array)

In [5]: def encode(message):

 msg_array = np.array(list(message)) - 65

 return msg_array

def decode(msg_array):

 message = bytes(list(msg_array + 65))

 return message

In [6]: encode = lambda message: np.array(list(message)) - 65

decode = lambda msg_array: bytes(list(msg_array + 65))

In [7]: caesar_encrypt = lambda ciphertext, key: decode((encode(ciphertext)+key)%26)

caesar_decrypt = lambda ciphertext, key: decode((encode(ciphertext)-key)%26)

print(caesar_encrypt(b"ATTACKATDAWN", 12))

print(caesar_decrypt(b'MFFMOWMFPMIZ', 12))

In [8]: ct = b"TKDNAAAATCTW"

In [9]: M = encode(ct).reshape(3,4)

print(M)

In [10]: # This notation looks scary!

[[0 19 19]

 [0 2 10]

 [0 19 3]

 [0 22 13]]

And flatten the array before decoding:

b'ATTACKATDAWN'

Language Modelling
Frequency analysis lies at the heart of most cryptanalysis. Being able to count the occurance of
letters (or combinations of letters) in a ciphertext is very useful, and luckily Python makes this
easy for us:

[(' ', 139),

 ('o', 69),

 ('h', 64),

 ('s', 54),

 ('x', 49),

 ('e', 45),

 ('c', 44),

 ('p', 37),

 ('a', 36),

 ('b', 32),

 ('l', 26),

 ('q', 24),

 ('j', 21),

 ('i', 16),

 ('k', 14),

 ('m', 13),

 ('u', 10),

 ('r', 10),

 ('f', 9),

 (',', 9),

 ('n', 8),

 (';', 7),

We are selecting [rows, columns], and saying we want all the rows (':')

And columns 1, 2 then 0, in that order.

Mt = M.T[:,[1,2,0]] # Using inverse of the key for decryption

print(Mt)

In [11]: decode(Mt.flatten())

Out[11]:

In [12]: from collections import Counter

ct = """ah ae psh hxo ibahai qxs iskphe; psh hxo mcp qxs vsaphe skh xsq hxo ehbspu m
ehkmfjoe, sb qxobo hxo lsob sr loole iskjl xcno lspo hxom fohhob. hxo ibolah fojspue
hs hxo mcp qxs ae cihkcjjw ap hxo cbopc, qxseo rcio ae mcbbol fw lkeh cpl eqoch cpl
fjssl; qxs ehbanoe ncjacphjw; qxs obbe, qxs ismoe exsbh cucap cpl cucap, foickeo hxo
bo ae ps orrsbh qahxskh obbsb cpl exsbhismapu; fkh qxs lsoe cihkcjjw ehbano hs ls hx
o loole; qxs gpsqe uboch ophxkeaceme, hxo uboch lonshaspe; qxs evople xameojr ap c q
sbhxw ickeo; qxs ch hxo foeh gpsqe ap hxo opl hxo hbakmvx sr xaux cixaonomoph, cpl q
xs ch hxo qsbeh, ar xo rcaje, ch joceh rcaje qxajo lcbapu ubochjw, es hxch xae vjcio
excjj ponob fo qahx hxseo isjl cpl hamal eskje qxs poahxob gpsq naihsbw psb loroch."
ct = ct.replace('\n','')

#This automatically converts the string into a list,

and counts the frequency of each character.

letter_freq = Counter(ct)

letter_freq.most_common()

Out[12]:

 ('w', 7),

 ('v', 4),

 ('g', 3),

 ('.', 2)]

Converting these into percentages requires a little manipulation. To compare against expected
letter frequencies for English, it'll be helpful to strip non-alphabet characters. We can do this
using a 'regular expression':

ahaepshhxoibahaiqxsiskphepshhxomcpqxsvsapheskhxsqhxoehbspumcpehkmfjoesbqxobohxolsobs
rlooleiskjlxcnolspohxomfohhobhxoibolahfojspuehshxomcpqxsaecihkcjjwaphxocbopcqxseorci
oaemcbbolfwlkehcpleqochcplfjsslqxsehbanoencjacphjwqxsobbeqxsismoeexsbhcucapcplcucapf
oickeohxoboaepsorrsbhqahxskhobbsbcplexsbhismapufkhqxslsoecihkcjjwehbanohslshxolooleq
xsgpsqeubochophxkeacemehxoubochlonshaspeqxsevoplexameojrapcqsbhxwickeoqxschhxofoehgp
sqeaphxooplhxohbakmvxsrxauxcixaonomophcplqxschhxoqsbeharxorcajechjocehrcajeqxajolcba
puubochjweshxchxaevjcioexcjjponobfoqahxhxseoisjlcplhamaleskjeqxspoahxobgpsqnaihsbwps
bloroch

[('o', 9.175531914893616),

 ('h', 8.51063829787234),

 ('s', 7.180851063829787),

 ('x', 6.51595744680851),

 ('e', 5.98404255319149),

 ('c', 5.851063829787234),

 ('p', 4.920212765957447),

 ('a', 4.787234042553192),

 ('b', 4.25531914893617),

 ('l', 3.4574468085106385),

 ('q', 3.1914893617021276),

 ('j', 2.7925531914893615),

 ('i', 2.127659574468085),

 ('k', 1.8617021276595744),

 ('m', 1.7287234042553192),

 ('u', 1.3297872340425532),

 ('r', 1.3297872340425532),

 ('f', 1.196808510638298),

 ('n', 1.0638297872340425),

 ('w', 0.9308510638297872),

 ('v', 0.5319148936170213),

 ('g', 0.39893617021276595)]

Visually plotting the letter frequency distribution compared to what you would expect for
English can sometimes be useful:

Populating the interactive namespace from numpy and matplotlib

In [13]: import re

ct2 = re.sub(r"[^a-z]", "", ct)

print(ct2)

letter_freq = Counter(ct2)

[(letter, 100*count/len(ct)) for letter, count in letter_freq.most_common()]

Out[13]:

In [14]: %pylab inline

import pylab as plt

plt.rcParams["figure.figsize"] = (20,3)

alpha = 'abcdefghijklmnopqrstuvwxyz'

engfreq = [8.2,1.5,2.8,4.3,13,2.2,2,6.1,7,0.15,0.77,4,

 2.4,6.7,7.5,1.9,0.095,6,6.3,9.1,2.8,0.98,2.4,0.15,2,0]

plt.xticks(range(len(alpha)), list(alpha))

plt.bar(range(len(alpha)),[100*letter_freq[a]/len(ct2) for a in alpha],

 alpha=0.8, label='ct freqs')

plt.bar(range(len(alpha)), engfreq, alpha=0.8, label='english freqs')

plt.legend()

<matplotlib.legend.Legend at 0x7f3548313e10>

For a monoalphabetic substitution cipher, single letter frequency analysis can help you recover
the alphabet mapping. Once you have the correct mapping, there are a few different ways you
can apply it, for example:

it is not the critic who counts; not the man who points out how the strong man stumb
les, or where the doer of deeds could have done them better. the credit belongs to t
he man who is actually in the arena, whose face is marred by dust and sweat and bloo
d; who strives valiantly; who errs, who comes short again and again, because there i
s no effort without error and shortcoming; but who does actually strive to do the de
eds; who knows great enthusiasms, the great devotions; who spends himself in a worth
y cause; who at the best knows in the end the triumph of high achievement, and who a
t the worst, if he fails, at least fails while daring greatly, so that his place sha
ll never be with those cold and timid souls who neither know victory nor defeat.

Alternatively, Python provides a string 'translate' function that lets you map between the
ciphertext and plaintext alphabets directly:

'it is not the critic who counts; not the man who points out how the strong man stum
bles, or where the doer of deeds could have done them better. the credit belongs to
the man who is actually in the arena, whose face is marred by dust and sweat and blo
od; who strives valiantly; who errs, who comes short again and again, because there
is no effort without error and shortcoming; but who does actually strive to do the d
eeds; who knows great enthusiasms, the great devotions; who spends himself in a wort
hy cause; who at the best knows in the end the triumph of high achievement, and who
at the worst, if he fails, at least fails while daring greatly, so that his place sh
all never be with those cold and timid souls who neither know victory nor defeat.'

Calculating a score for how much like English (or another language) a putative plaintext is will be
useful when it comes to attacks that include an element of trial and error. For this, single letter
frequencies are often not enough (and certainly no help with transposition ciphers!) so you
might want to consider scoring based on a frequency of n-grams, i.e. groups of 2, 3 or 4 letters.

How you combine frequencies to calculate a score for 'how English' a putative plaintext looks is
left as an exercise to the reader, though it is recommended that you work with the logarithms of
the frequencies. You'll find many advanced techniques for language modelling out there,
including machine learning methods such as neural networks, but often simple methods are
highly effective.

Out[14]:

In [15]: alpha = 'abcdefghijklmnopqrstuvwxyz'

key = 'cfiloruxadgjmpsvybehknqtwz'

pt = ""

for letter in ct:

 if letter in alpha:

 pt += alpha[key.index(letter)]

 else:

 pt += letter

print(pt)

In [16]: table = str.maketrans('cfiloruxadgjmpsvybehknqtwz',

 'abcdefghijklmnopqrstuvwxyz')

ct.translate(table)

Out[16]:

Algorithms
For simple ciphers, we can use a 'brute-force' approach: we can exhaust over the keyspace (all
possible keys) until we find the right one. This assumes we know how to recognise the 'right' key
when we find it. For a smaller enough keyspace (like a Casaer Shift where there are only 26
possible keys), we could manually inspect each 'putative' plaintext until we spot the right one. As
the keyspace grows, we will need to use one of the approaches to language modelling
described above to score putative plaintexts and identity the right one.

The brute-force approach very quickly becomes infeasible. You do not even need something as
complex as the Engima machine to start to struggle, even with modern computing power. A
simple monoalphabetic substitution cipher has a keyspace of 26 factorial (26!) which is roughly
403 septillion (million billion billion), or in modern computing terms, that's roughly equivalant to
a 88-bit key.

Many traditional ciphers, however, have a weakness in that they do not provide sufficient
'confusion' between the ciphertext and the key. This means attempting to decrypt a ciphertext
with a key that is 'close' to the right one but not exactly right will result in a plaintext that is
partially right. We can exploit this to conduct a smarter search of the keyspace by scoring each
putative plaintext and attempting to adjust the key to get a plaintext that scores higher. There
are a whole family of different algorithms that do this using varying methods, but this approach
is generally referred to as Hill climbing. This is a powerful technique for cracking many ciphers,
therefore the implementation of such an algorithm is left as an exercise to the reader!

https://en.wikipedia.org/wiki/Confusion_and_diffusion
https://en.wikipedia.org/wiki/Hill_climbing

